robotron

Betriebsdokumentation Mikrorechnersystem K1520

Technische Beschreibung ADA K 6022

Heft 4

Betriebsdokumentation Mikrorechnersystem K 1520

Heft 4: Technische Beschreibung ADA K 6022

VEB Robotron-Elektronik Zella-Mehlis 1983

Exporteurs

Robotron-Export-Import

Volkseigener Außenhandelsbetrieb der

Deutschen Demokratischen Republik

DDR - 1080 Berlin

Friedrichstraße 61

Hersteller:

VEB Robotron-Elektronik

DDR - 6060 Zella-Mehlis

Straße der Antifa 63 - 66

Postschließfach 96

Verantwortl. Lektor und Gesamtbearbeitung im Auftrag der DEWAG Cottbus: Dr. Lutz-Steffen Tag, Leipzig

Druck: Typodruck Bereich Leisnig SG 139/47/83 III/8/1 295

robotron

Inhalt		
1.	Kurzcharakteristik	2
2.	Technische Daten	2
		4
	Verwendungszweck	4
	Funktion	4
3.2.1.	Programmierbare Parallel-E/A-Schnittetelle	5
3.2.2.	Ruf-End-Steuerung	6
3.2.3.	Adressierungseinrichtung	8
3.2.4.	Pegelstufen	12
3.2.5.	Anschlußlogik zwischen Systembus und PIO-Baustein	12
	Programmierung	13
3.4.	Anechlugverzeichnia	16
3,5.	Interfacekabel	18
erschei	Teile der Betriebsdokumentation Mikrorechnersystem nen in folgenden Einzelausgaben:	K 152
weitere	Teile der Betriebsdokumentation Mikrorechnersystem	K 152
erschei	nen in folgenden Einzelausgaben:	K 152
erschei 	nen in folgenden Einzelausgaben: Technische Beschreibu	K 152
erschei Heft 1: Heft 1:	nen in folgenden Einzelausgaben: Technische Beschreibu Allgemeine Unterlagen	K 152
erschei Heft 1: Heft 1:	Technische Beschreibu Allgemeine Unterlagen Technische Beschreibung OPS K 3520, PFS K 3820,	K 152
Heft 1: Heft 1: Heft 2:	Technische Beschreibu Allgemeine Unterlagen Technische Beschreibung OPS K 3520, PFS K 3820, OFS K 3621	K 152
erschei Heft 1: Heft 1: Heft 2:	Technische Beschreibu Allgemeine Unterlagen Technische Beschreibung OPS K 3520, PFS K 3820, OFS K 3621 Technische Beschreibung OPS K 3525, OPS K 3521,	K 152
Heft 1: Heft 1: Heft 2: Heft 3:	Technische Beschreibu Allgemeine Unterlagen Technische Beschreibung OPS K 3520, PFS K 3820, OFS K 3621 Technische Beschreibung OPS K 3525, OPS K 3521, OPS K 3621	K 152
Heft 1: Heft 1: Heft 2: Heft 3: Heft 5:	Technische Beschreibu Allgemeine Unterlagen Technische Beschreibung OPS K 3520, PFS K 3820, OFS K 3621 Technische Beschreibung OPS K 3525, OPS K 3521, OPS K 3621 Technische Beschreibung ASV K 8021	K 152
Heft 1: Heft 1: Heft 2: Heft 3: Heft 5: Heft 6:	Technische Beschreibu Allgemeine Unterlagen Technische Beschreibung OPS K 3520, PFS K 3820, OFS K 3621 Technische Beschreibung OPS K 3525, OPS K 3521, OPS K 3621 Technische Beschreibung ASV K 8021 Technische Beschreibung AFS K 5121	K 152
Heft 1: Heft 1: Heft 2: Heft 3: Heft 5: Heft 6: Heft 7:	Technische Beschreibu Allgemeine Unterlagen Technische Beschreibung OPS K 3520, PFS K 3820, OFS K 3621 Technische Beschreibung OPS K 3525, OPS K 3521, OPS K 3621 Technische Beschreibung ASV K 8021 Technische Beschreibung AFS K 5121 Technische Beschreibung BDE K 7622, ABD K 7022	K 152
Heft 1: Heft 1: Heft 2: Heft 3: Heft 5: Heft 6: Heft 7:	Technische Beschreibu Allgemeine Unterlagen Technische Beschreibung OPS K 3520, PFS K 3820, OFS K 3621 Technische Beschreibung OPS K 3525, OPS K 3521, OPS K 3621 Technische Beschreibung ASV K 8021 Technische Beschreibung AFS K 5121 Technische Beschreibung BDE K 7622, ABD K 7022 Technische Beschreibung PPE K 0420, PLG K 0421,	K 152
Heft 1: Heft 1: Heft 2: Heft 3: Heft 5: Heft 6: Heft 7: Heft 8:	Technische Beschreibu Allgemeine Unterlagen Technische Beschreibung OPS K 3520, PFS K 3820, OFS K 3621 Technische Beschreibung OPS K 3525, OPS K 3521, OPS K 3621 Technische Beschreibung ASV K 8021 Technische Beschreibung AFS K 5121 Technische Beschreibung BDE K 7622, ABD K 7022 Technische Beschreibung PPE K 0420, PLG K 0421, PAE K 0422	K 152
Heft 1: Heft 1: Heft 2: Heft 3: Heft 5: Heft 6: Heft 7: Heft 8: Heft 9:	Technische Beschreibu Allgemeine Unterlagen Technische Beschreibung OPS K 3520, PFS K 3820, OFS K 3621 Technische Beschreibung OPS K 3525, OPS K 3521, OPS K 3621 Technische Beschreibung ASV K 8021 Technische Beschreibung AFS K 5121 Technische Beschreibung BDE K 7622, ABD K 7022 Technische Beschreibung PPE K 0420, PLG K 0421, PAE K 0422 Technische Beschreibung AKB K 5020	K 152
Heft 1: Heft 1: Heft 2: Heft 3: Heft 5: Heft 6: Heft 7: Heft 8: Heft 9:	Technische Beschreibu Allgemeine Unterlagen Technische Beschreibung OPS K 3520, PFS K 3820, OFS K 3621 Technische Beschreibung OPS K 3525, OPS K 3521, OPS K 3621 Technische Beschreibung ASV K 8021 Technische Beschreibung AFS K 5121 Technische Beschreibung BDE K 7622, ABD K 7022 Technische Beschreibung PPE K 0420, PLG K 0421, PAE K 0422 Technische Beschreibung AKB K 5020 Technische Beschreibung AKB K 5020 Technische Beschreibung AKB K 5020	K 152
Heft 1: Heft 1: Heft 2: Heft 3: Heft 5: Heft 6: Heft 8: Heft 9: Heft 10:	Technische Beschreiburg OPS K 3520, PFS K 3820, OFS K 3621 Technische Beschreiburg OPS K 3525, OPS K 3521, OPS K 3621 Technische Beschreiburg OPS K 3525, OPS K 3521, OPS K 3621 Technische Beschreiburg ASV K 8021 Technische Beschreiburg AFS K 5121 Technische Beschreiburg BDE K 7622, ABD K 7022 Technische Beschreiburg PPE K 0420, PLG K 0421, PAE K 0422 Technische Beschreiburg AKB K 5020 Technische Beschreiburg ABS K 7023, K 7023.01, K 7024.30, K 7029	K 152
Heft 1: Heft 1: Heft 2: Heft 3: Heft 5: Heft 6: Heft 7: Heft 8: Heft 10:	Technische Beschreiburg OPS K 3520, PFS K 3820, OFS K 3621 Technische Beschreibung OPS K 3525, OPS K 3521, OPS K 3621 Technische Beschreibung OPS K 3525, OPS K 3521, OPS K 3621 Technische Beschreibung AFS K 5121 Technische Beschreibung AFS K 5121 Technische Beschreibung BDE K 7622, ABD K 7022 Technische Beschreibung PPE K 0420, PLG K 0421, PAE K 0422 Technische Beschreibung AKB K 5020 Technische Beschreibung ABS K 7023, K 7023.01, K 7024.30, K 7029 Technische Beschreibung ALB K 6025	K 152
Heft 1: Heft 1: Heft 2: Heft 3: Heft 5: Heft 6: Heft 8: Heft 9: Heft 10:	Technische Beschreibu Allgemeine Unterlagen Technische Beschreibung OPS K 3520, PFS K 3820, OFS K 3621 Technische Beschreibung OPS K 3525, OPS K 3521, OPS K 3621 Technische Beschreibung ASV K 8021 Technische Beschreibung AFS K 5121 Technische Beschreibung BDE K 7622, ABD K 7022 Technische Beschreibung PPE K 0420, PLG K 0421, PAE K 0422 Technische Beschreibung AKB K 5020 Technische Beschreibung ABS K 7023, K 7023.01, K 7024.30, K 7029 Technische Beschreibung ALB K 6025 Technische Beschreibung ATD K 7026	K 152

Kurzcharakteristik

Die Anschlußsteuereinheit ADA - K 6022 dient zum Anschluß von peripheren Geräten mit dem Standard-Anschluß robotron 1000/1 an den Mikrorechner K 1520. Der Anschluß ADA --- Peripherie erfolgt durch Interfacekabel (s. Pkt. 3.5.).

2. Technische Deten

Steckeinheitenabmessungen: 215 mm x 170 mm

Steckraster: 20 mm

Steckverbinder: 2 x 58polig, indirekt, Benf. 304-58

> TGL 29331/03 bzw. 2x 58polig, direkt

TGL 29331/01

39polig, indirekt, Bauf. 402-39

TGL 29331/04

(SIF 1000-Anschluß)

5/60/30/95/10-1_R

5 V + 5 %, typ. 0.9 A

12 V + 5 %, typ. 0,1 A

Kanäle je Steckeinheit: 2 unabhängig voneinander arbeiten-

de Kenäle

1 Ausgabekanal

1 Eingebekenal

8 Datenbits (/DAT-A bzw. /DAT-E)

3 Kommandobits (/KOM-A bzw. /KOM-E)

3 Statusbits (/STA-A bzw. /STA-E)

1 Paritätsbit (/PA-A bzw. /PA-E)

/RUF-A, /RUF-E, /END-A, /END-E,

/GES-E

Binsatzklasse:

Stromversorgung:

Ubertragungsbreite:

Standard-Anschluß

robotron 1000/1)

(pro Kanal zum

Steuersignale:

(zum Standard-Anschluß robotron 1000/1)

Signalpegel (KME3):

Belastung der Ausgangsleitungen: Ein- und Ausgangsleitungen zum Systembus des MR K 1520:

Übertragungsgeschwindigkeit:

Übertragungsentfernung: Adressierung der Steckeinheit:

Geräteanschluß:

High-Potential: 6,5 ... 12 V Low-Potential: 0 ... 0,5 V max. 3 mA bei 12 V

8 Adressenleitungen (ABO ... AB7)
(Bingänge Low-Power-Schottky-TTL)
8 Datenleitungen (DBO ... DB7)
(Bin/Ausgänge Low-Power-Schottky-TTL)

4 Steuerleitungen (/M1, /IODI, /RESET, TAKT)

(Eingänge Low-Power-Schottky-TTL)

3 Steuerleitungen (IORQ, /RD, INT)

Belastung: 2 parallelliegende Ein
bzw. Ausgänge der PIO-Beusteine

Q301

2 Steuerleitungen für Verdrehtung der Prioritätskette (IEI, /IEO) (TTL-Eingengs- bzw. Ausgengspegel)

20K Byte/s (8 Bit-perellel ohne
Paritätsbit)

≥ 5K Byte/s (8 Bit-parallel, mit Paritätsbit)

mex. 20 m

Durch interne Wickelverbindungen auf den Programmierebenen X6 und X7 können 32 Adressen ausgewählt werden.

Standardenschluß 1000/1 (SIF 1000) realisiert durch 2 x 39polige Steckverbinder nach TGL 29331/04.

Funktionsbeschreibung

3.1.

Verwendung szweck

Die Anschlußsteuereinheit ADA - K 6022 ist für den Anschluß von SIF 1000 Geräten an den Mikrorechner K 1520 konzipiert. An die Ein/Ausgabekenäle der Steckeinheit können 1 Ausgabegerät und 1 Bingabegerät angeschlossen werden. Die Steckeinheit wird unter Beachtung der Prioritäten steckplatzunabhängig an den Systembus angeschlossen. Der Datenaustausch zwischen der ADA und den peripheren SIF robotron 1000-Geräten erfolgt über den programmierbaren Parallel-Eingabe/Ausgabe-Interfacebaustein Q301 (PIO). Dabei wird der Datenaustausch grundsätzlich interruptgesteuert durchgeführt.

Es kommen die folgenden Betriebsarten des PIO-Bausteins Q301 zur Anwendung:

Für die Ausgabe:

Betriebsart Byte-Ausgabe und

Betriebsart Bit-Ein/Ausgabe

Für die Eingabe:

Betriebsart Byte-Bingabe und

Betriebsart Bit-Ein/Ausgebe

3.2. Funktion

Die ADA besteht aus folgenden Funktionsgruppen:

- Programmierbarer Parallel-E/A-Baustein (PIO)
- Ruf-End-Steuerung
- Adressierungseinrichtung
- Pagelstufen (Leitungssender und Leitungsempfänger)
- Anschlußlogik für Daten-, Steuer- und Adressenleitungen vom Systembus an den Q301.
- Stetusregister

Programmierbare Parallel-E/A-Schnittstelle

Des Kernstück für den Datenaustausch zwischen der ADA und den peripheren Geräten bildet der PIO-Baustein Q301 zur parallelen Bin- bzw. Ausgabe. Bei seinen zwei unabhängigen 8-Bit-breiten bidirektionalen peripheren Interfacekanälen (A und B) werden die Betriebsarten wie folgt angewendet:

Ausgabeoperation:

- Betriebsart Byte-Ausgabe (Ø) für den Datenaustausch der Datenleitungen über den Interfacekanal A (Port A).
- Betriebsart Bit-Ein/Ausgabe (3) für Kommendo-Status und Prüfbitleitungen über den Interfecekenal B (Port B).
- /RUF-A und /END-A werden über die beiden Quittungssignele ARDY bzw. /ASTB ausgetauscht.

Eingebeoperation:

- Betriebsart Byte-Eingebe (1) für den Detenaustausch der Datenleitungen über den Interfacekenal A.
- Betriebsert Bit-Ein/Ausgebe (3) für Kommendo-, Stetus-, Gesuch- und Prüfbitleitungen über den Interfecekenal B.
- /RUF-E und /END-E werden über die beiden Quittungssignele ARDY bzw. /ASTB eusgetauscht.

Jeder beiden Port kann durch Steuerworte von der ZRE aus programmiert werden. Für Ein- bzw. Ausgabekanäle ist die Signalbelegung des Port B folgende:

	7 .	6	5≘	4	3	2	1	0
Ausgabe		S	tetu	16	Prüfbit	K	omne	ndo
	-	A3	A2	A1	PAA	A3	A2	A1
Prüf- bit		S	ta tu	18	Gesuch	Ж	omme	ndo
	PAB	E3	E2	E1	B	A3	A2	A1

3.2.2. Ruf-End-Steuerung

Die Übertregungszyklen zwischen ADA und Peripheriegerät (RUF-KND-Steuerung) werden über eine Zusatzlogik durch die Signale ARDY und /ASTB gebildet.

Die Statussignale werden in einem Schaltkreis gespeichert, der mit RUF gesteuert wird. Sie sind über Port B abfragbar.

Ausgabe:

Das vom PIO-Baustein Q301 aktivierte Signal ARDY gelangt über einen flankengesteuerten Speicherschaltkreis an eine Laufzeitkette. Liegt an der Laufzeitkette außerdem des nichtaktive Signal /END-A an. so wird 8 Systemtakte nach dem Auftreten von ARDY das Signal /RUF-A zum peripheren Gerät gesendet. Dabei ist garantiert, daß die Daten eingeschwungen sind und vom peripheren Gerät übernommen werden können. Aktiviert dieses dann das Signal /END-A, so wird der Eingeng der Laufzeitkette gesperrt, der flankengesteuerte Speicherschaltkreis rückgesetzt und demit 8 Systemtakte denech /RUF-A insktiv. (Dadurch ist garantiert, daß das Signal /RUF-A in einer Zeit >3,3 s aktiv ist). Während der Zeit /RUF-A = aktiv und /END-A = aktiv wird des Signel ASTB gebildet. In der Zeit /RUF-A = aktiv kann das Statusregister geleden werden. Wird aus irgend einem Grunde das Signal /END-A nicht aktiviert, so kenn men progremmtechnisch den flankengesteuerten Speicherschaltkreis über Binlesen des Status (Eingebebefehl Port B) rücksetzen. Demit wird daz Signal /RUF-A inaktiv, und ein neuer Ausgebezyklus kann gestertet werden.

Eingabe:

Nach dem Ende einer Datenübertregung ADA-ZRE (beim Beginn eines Eingebeprogramms ist dieses 1. übertregene Zeichen ungliltig) wird das Signal ARDY automatisch vom PIO-Baustein aktiviert. Dieses Signal gelangt über einen flankengesteuerten Speicherschaltkreis an eine Laufzeitkette. Liegt en der Laufzeitkette

außer dem nichtektiven Signal /END-E an, so wird 8 Systemtakte nach dem Auftreten von ARDY das Signal /RUF-E zum peripheren Gerät gesendet. Damit kann das periphere Gerät zur ADA senden und das Signal /END-E aktivieren. Durch dieses Signal wird der Eingang der Laufzeitkette gesperrt, der flankengesteuerte Speicherschaltkreis rückgesetzt und demit 8 Systemtakte danach /RUF-E inaktiv. (Dadurch ist gerantiert, daß das Signal /RUF-E in einer Zeit > 3,3 µs aktiv ist). In der Zeit /RUF-E = aktiv ist es möglich, das Statusregister zu laden. Während der Zeit /RUF-E = aktiv und /END-E = aktiv wird des Signal /ASTB aktiv, und die Daten werden in das Eingsberegister des Interfacebausteins geladen.

Wird /ASTB inaktiv, so bildet der PIO-Baustein ein Interruptsignal und stellt das Signal ARDY auf inaktiv. Wird aus irgend
einem Grunde das Signal /END-E nicht aktiviert, so kann man
programmtechnisch den flankengesteuerten Speicherschaltkreis
über Einlesen des Status (Eingabebefehl Port B) rücksetzen.
Demit wird das Signal /RUF-E inaktiv, und ein neuer Eingabezyklus kann gestartet werden.

Verbindet der Anwender der ADA K 6022 auf der Programmierebene X9:1 mit X8:2, so gilt für die Programmierung der Eingabe der oben beschriebene Ablauf.

Wird X9:1 mit X8:1 verbunden, hesteht vom Anwender die Möglichkeit, die folgende Zusatzfunktion der ADA K 6022 zu nutzen:

Im oben beschriebenen Ablauf wird durch ARDY direkt /RUF-E aktiviert. Die Zusatzfunktion besteht jetzt darin, daß das Signal /RUF-E erst dann aktiviert wird, wenn im Programm dem Eingabebefehl für die Daten ein Befehl "Ausgabe-Daten-Port A" folgt. Damit besteht die Möglichkeit, nach teliebigen Daten-übertragungen das Signal /RUF-E nicht wieder aktiv werden zu lassen und das Eingabeprogramm für das periphere Gerät exakt beendet zu können.

3.2.3.

Adressierungseinrichtung

Der Adressenbereich der niederwertigen Adressen ABO ... AB7 wird zur Eingebe-Ausgebe-Adressierung und zur Steckeinheitenauswahl benutzt.

Das Adressenbit ABO wählt den entsprechenden Interfacekanal (Port) des ausgewählten PIO-Bausteins aus.

(ABO = "low" - Interfacekanal A;

ABO = "High" - Interfacekanal B).

Das Adressenbit AB1 legt fest, ob das jeweilige auf den Datenleitungen liegende Wort ein Daten- oder ein Steuerwort ist.

(AB1 = "Low" - Datenwort;

AB1 = "High" Steuerwort)

Durch das Adressenbit AB2 erfolgt die Auswahl des jeweiligen zu benutzenden PIO-Bausteins

(AB2 = "Low" - Baustein 1 (PIO1)

AB2 = "High" - Beustein 2 (PIO2))

Die Adressierung der Steckeinheit erfolgt durch die Adressenbits AB3 ... AB7 mit Hilfe von Wickelverbindungen auf den Programmierebenen X6 und X7.

3.2.3.1.

Die Zuordnung der Adressenbits bei der Adressierung der PIO auf der ADA K 6022

Für die Adressierung auf der ADA - K 6022 stehen die Adresbits ABO - AB7 zur Verfügung.

AB7 AB6 AB5 AB3 AB2 AB1 AB0

frei wählbere Bits zur Bits für die beustein-Steckeinheitenedressierung spezifische Adressierung - AB7 - AB3 sind beliebig variierbar und in Verbindung mit den Adresbits AB2 - ABO als 2 Tetraden bei der Programmierung su berücksichtigen.

Adressierbereich ABO - AB7:

AB7	AB6	AB5	AB4	AB3	AB2	PIO- Bau- stein	AB1	D/S	ABØ	Ker im PIC		W. U. S
Frei	wähl	barer	Bere	ich	ø	1	Ø	D	Ø	A	(t	
	Steck ssier	e inhe ung	iten-		1	2	1	S	1	В		

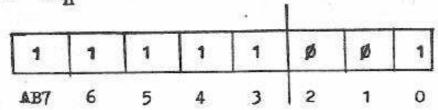
Zur Bildung der Steckeinheitenedressen sind Progremmierebenen X6 und X7 auf der K 6022 miteinander zu verbinden.

Adressierbeispiele:

1.	Adress	e "00	H ₄₀				1		
		Ø	Ø	Ø	Ø	Ø	Ø	Ø	g
		AB7	6	5	4	3	2	1	ABO

Inhalt der Adresse "00u":

- . Port A im PIO Bedeutung siehe
 . Datenwort Tabelle
 . PIO-Baustein 1 Adressierbereich
- . alle Bits für die Steckeinheitenadressierung haben Mullpotential


Für die Steckeinheitenedresse sind auf dem Programmierfeld X6/X7 folgende Verbindungen zu realisieren:

(AB3)-		10
(AB4)	-8:-] ⁸ 7
(AB5)	6 <i>6</i>] 6 5
(AB6)-	-4 6	7 4 3
(AB7)) 2 1

Haben die Bits AB7 - AB3 Nullpotentiel, sind die geredzahligen Pins von X6 mit den zugeordneten Plus von X7 zu verbinden. (Siehe Beispiel)

Wenn die Bits AB7 - AB3 L-Potential haben, sind jeweils die ungeradzahligen Pins von X6 mit den zugeordneten Pins von X7 zu verbinden (gleiche Pinpaare von X6 sind gleichen Pinpaaren von X7 zugeordnet).

2. Adresse "F9H"

Inhalt der Adresse "F9H":

. Port B im PIO

Bedeutung siehe

. Datenwort

Tabelle

. PIO-Baustain 1

Adressierbereich

. alle Bits für die Steckeinheitenadresse haben L-Potentiel

Folgende Verbindungen sind auf dem Programmierfeld X6/X7 zu realisieren:

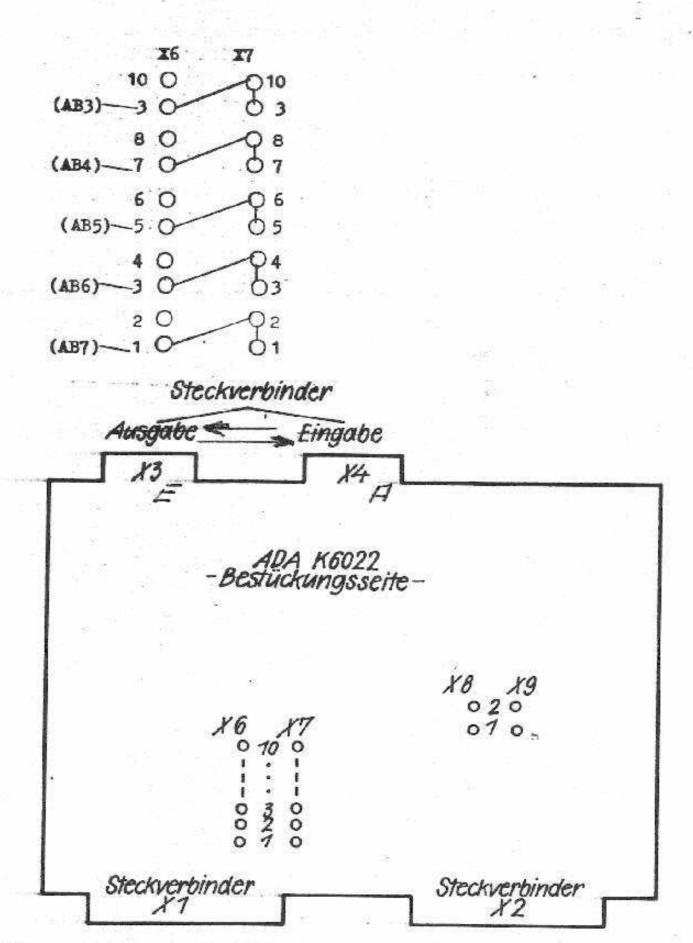


Abb. 1 Programmierfelder der Steckeinheit

3.2.3.2.

Zuordnung der PIO-Beusteine zu den Steckverbindern der ADA K 6022

Steckverbinder X3

PIO-Beustein 1; Ausgebe-Kenel

PIO-Baustein 2; Bingabe-Kenal

3.2.4.

Pegelstufen (Leitungssender und Leitungsempfänger am peripheren Interface)

Peripherieseitig wird der KME3-Pegel (D21) verlangt. Der Interfacebaustein besitzt jedoch TTL-kompatible MOS-Bin- und Ausgänge, wodurch für die Anpassung an die peripheren SIF robotron 1000-Geräte und zur Übertragung auf längeren Leitungen gesonderte Sender- und Empfängerbeustufen eingesetzt werden.

Die Sondereusgänge werden durch NAND mit höherer Spannungsfestigkeit und offenen Kollektoren realisiert. Als Leitungsempfänger werden universelle Empfängerschaltkreise mit relativ großem Eingangswiderstand und Triggercharakteristik eingesetzt.

3.2.5.

Anschlußlogik zwischen Systembus und PIO-Beustein

Alle Adres- und Datenleitungen sowie ein Teil der Steuerleitungen des Systembusses sind durch spezielle Anpassungsbausteine in Schottky-TTL-Technologie von den Interfaceschaltkreisen entkoppelt.

Die Detenleitungen, die auf einen bidirektionelen Bustreiber geführt werden, sind richtungsgesteuert.

3.3. Programmierung

Die beiden unabhängigen Interfecekanäle eines PIO-Bausteins werden durch zwei bis fünf Steuerworte von der ZRE programmiert. (Je nach gewünschter Betriebsart).

Laden des Interruptvektors

Der Interruptvektor des betreffenden Port des PIO-Bausteins wird durch ein Programm in den PIO-Baustein geladen. Dieser 8-Bit-Vektor wird während des Interruptbestätigungszyklusses von dem PIO-Baustein, der momentan die höchste Priorität besitzt, auf den Datenbus gelegt und damit der ZRE mitgeteilt. In der ZRE dient der Vektor zur Adressierung des zum entsprechenden Interfacekanels gehörenden Interruptbehandlungsprogramme.

D7	D6	D5"	D 4	D3	D2	D1	DØ
v ₇	₹6	v ₅	٧4	v ₃	٧2	v ₁	Ø

- DØ wird als Markierungsbit benutzt. Dieses Bit kennzeichnet das Steuerwort als Interruptvektor.
- V niederwertiger Teil einer Adresse für Interruptbehendlung.

. wahl der gewiinschten Betriebsarten

Die PIO-Bausteine der ADA arbeiten in den Betriebsarten Ø, 1 und 3 (s. Pkt. 3.2.1.). Die Betriebsart wird durch des Kinschreiben eines Steuerwortes in den speziellen Interfacekanel des PIO-Bausteins definiert.

D7	D6	D5	D4	D3	D2	D1	DØ
М1	mø	x	x	1	1	1	1
Be- tri	ebs-	nic ben	ht ötigt	Ste	kieru uerwo: lwort	rt al	ts kennzeichnen der s Betriebsertenaus-

Betriebsert	10-24	M1	MØ	
Byte-Ausgabe	(Ø)	Ø	ø	
Byte-Eingebe	(1)	Ø	1	
Byte-Ein/Ausgabe (bidirektional)	(2)	1	ø	in ADA nicht Verwendet
Bit-Bin/Ausgabe	(3)	1	1	nur Port B

Die Markierungsbits D3-D0 müssen auf "1" gesetzt sein.
Bei der Betriebsert 3 (Bit-Ein/Ausgebe) muß nach dem Festlegen der Betriebsert definiert werden, welche Leitung des betreffenden Port als Eingeng oder als Ausgang betrieben wird. Des wird mit dem folgenden Steuerwort festgelegt:

7ע	D6	D 5	D4	D3	D2	D1	DØ
1/07	1/06	1/05	1/04	1/03	1/02	I/0 ₁	1/00

I ≙ Bingeng = 1

0

Auegeng = Ø

Interruptsteuerung

Das Interrupt-Steuerwort hat für jedes Port des folgende Formet

D7	D6	D5	D4	D3	D2	D1	DØ
UB mögl.	UND ODER	High/ Low	Meske folgt	Ø	1	1	1

- D3 ... DØ: Die Bits definieren des Steuerwort als Interruptsteuerwort.
- D6 ... D4: Die Bits werden nur in der Betriebsart 3 benutzt. In den übrigen Betriebsarten werden sie
 ignoriert.
 - D6 Definiert, ob in der logischen Funktion UND bzw. ODER ein Interrupt ausgelöst werden soll

Ø = ODER-Funktion

1 = UND-Funktion

- D5 Die Kanaldatenleitung wird überwacht bei Ø auf den "low"-Zustand 1 auf den "high"-Zustand
- D4 1 bedeutet, daß ein Steuerwort folgen muß, welches vom Port als Maske interpretiert wird.

 D7: Ø ⊆ Interrupt-Flip-Flops rückgesetzt.

 Interruptanforderungen werden nicht angenommen.

 1 ⊆ Interrupt-Flip-Flops gesetzt.

Interruptanforderungen werden angenommen.

Maskierungssteuerwort:

D7	D6	D5	D4	D3	D2	D1	DØ
MB7	MDB6	MB ₅	MB ₄	MB ₃	MB ₂	MB ₁	MBØ

- MB_n = Ø ⊆ Bit der entsprechenden Portleitung wird zur Erzeugung eines Interrupt überwacht.

Es ist möglich, des Interrupt-Freigebe-Flip-Flop durch des folgende Steuerwort zu beeinflussen.

D7	D6 .	D 5	D4	D3 -	D2	D1	DØ
UB	x	X	x	Ø	Ø	1	1
mög]	1723						

- Initialisierung Setzen Interruptvektor (untere 8 Bits der Vektoredresse) für Port A
 - Setzen Betriebsart Ø für Port A
 - Setzen Interruptsteuerwort für Port A
 - Setzen Interruptvektor (untere 8 Bits der Vektoredresse) für Port B nur bei Arbeit mit Interrupt im Port B
 - Setzen Betriebsart 3 für Port B
 - Setzen I/O-Register

7	6	5	4	3	2	1	Ø	Bit
	1	1	1	ø	ø	Ø	Ø	

- Setzen Interruptsteuerwort für Port B (nur bei Arbeit mit Interrupt im Port B)
 - Setzen Maskierungssteuerwort für Port B (nur bei Arbeit mit Interrupt im Port B)

Start Dateneusgebe (Ausgabebefehl-Daten-Port A)
Abfrage Statusregister (Eingangsbefehl-Deten-Port B)

Bingabe

Initialisierung

- Setzen Interruptvektor (untere 8 Bits der Vektoredresse) für Port A
- Setzen Betriebsart 1 für Port A
- Setzen Interruptsteuerwort für Port A
- Setzen Interruptvektor (untere 8 Bits der Vektoradresse) für Port B nur bei Arbeit mit Interrupt im Port B
- Setzen Betriebsart 3 für Port B
- Setzen I/O-Register

7	6	. 5	4	3	2	1	0	Bit
1	1	1	1	1	Ø	Ø	Ø	

- Setzen Interruptsteuerwort für Port B (nur bei Arbeit mit Interrupt im Port B)
- Setzen Maskierungssteuerwort für Port B (nur bei Arbeit mit Interrupt im Port B)

Start Dateneingabe (Eingabebefehl-Daten-Port A)
Start Dateneusgabe (Ausgabebefehl-Daten-Port A)
nur bei RUF-Abschaltung, s. Pkt. 3.2.2.-Eingabe
Abfrage Statusregister (Eingabebefehl-Daten-Port B)

3.4. Anschlußverzeichnis

Der Anschluß von SIF robotron 1000-Geräten erfolgt über 39polige Steckverbinder. (Buchsenleiste befindet sich auf der Griffseite der Steckeinheit). Die Belegung des indirekten Steckverbinders ist aus der folgenden Aufstellung zu entnehmen:

Ausgebekanal: (Die Verteilung der Steckverbinder ist Pkt. 3.2.3.2. zu entnehmen).

Kon- takt	Signal- neme	Kon- tekt	Signel- neme	Kon- tekt	Signel- neme
A01	/STA-A1	B01	+ 12 V	CO1	/DAT-A4
A02	/STA-A3	B02	/RUF-A	C02	/DAT-A3
A03	/STA-A2	В03	-	CO3	/DAT-A2
A04	-	B04	Masse	CO4	/DAT-A1
A05	-	B05	Messe	CO5	/DAT-A8
A06	_	B06	Masse	C06	/DAT-A7
A07	Messe	B07	Messe	C07	Messe
80A	1	B08	Masse	COB	/DAT-A6
A09	-	В09	Messe	C09	/DAT-A5
A10	_	B10	Messe	C10	/PA-A
A11		B11		C11	/KOM-A3
A12	_	B12	/END-A	C12	/KOM-A2
A13	-	B13	+ 5 V	C13	/KOM-A1

Eingabekanal: (Steckverbinderverteilung entsprechend Pkt. 3.2.3.2.)

A01 /DAT A02 /DAT A03 /STA A04 /DAT A05 /DAT	-E7 B02	+ 5 V /RUF-E - Masse	CO1 CO2 CO3	/KOM-E3 /KOM-E2 /KOM-E1
AO3 /STA AO4 /DAT	_E1 B03	-	CO3	
AO4 /DAT		- Messe		/KOM-B1
	-E6 B04	Messe		
AO5 /DAT		ald bbc	CO4	_
1 23	-E5 B05	Masse	CO5	-
AO6 /STA	-E3 B06	Masse	C06	-
AO7 Mess	в В07	Masse	C07	Messe
AOS /DAT	-E3 B08	-	C08	-
AO9 /STA	-E2 B09	-	C09	-
A10 /DAT	-E2 B10	-	C10	-

	n- kt	Signel- name	Kon- tekt	Signal- name	Kon- takt	Signal- name	
A1	1	/DAT-B1	B11	/GES-E	C11	_	
A1	2	/DAT-B4	B12	/END_E	012	- 	
A1	3	/PA-E	B13	+ 12 V	013	-	

3.5. Interfacekabel

Übersicht der Kabeltypen, die für den Anschluß der Anschlußsteuereinheit ADA-K 6022 mit den peripheren Geräten zur Verfügung stehen.

Kabeltyp-Nr.	Kabellänge	Anschließbare Geräte
K 0514.01	5 m	
.02	10 m	
.03	15 m	LBL robotron 1210
. 04	20 m	
K 0515.01	5 m	
.02	10 m	LBS robotron 1215
.03	15 m	und
.04	20 m	SD 1156
K 0515.05		Adapterkabel für SD 1156
K 0516.01	5 m	
.02	10 m	000
.03	15 m	KMBG robotron 1250
• 04	20 m	Water Base College (ELL) Extraordinated Production College - Will Product Tradition

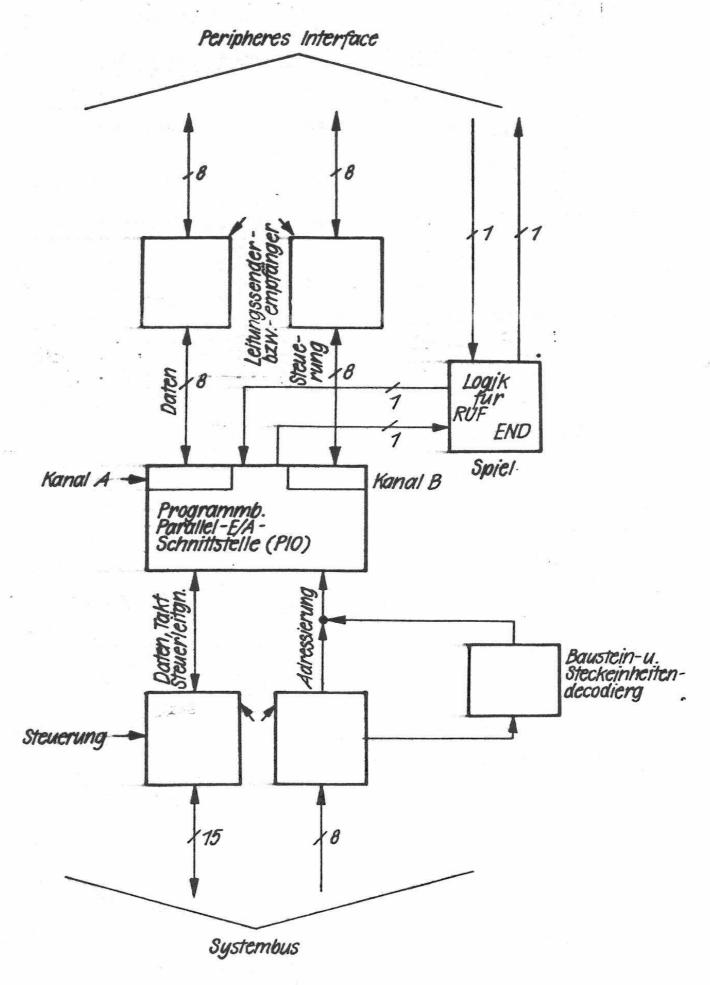


Abb. '2 Blockschaltbild der Anschlußsteuereinheit ADA K 6022